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• Six methods were compared for source
identification of heavy metals in soils.

• 95% of As came from wastewater irriga-
tion.

• 75, 88, 60, and 76% of Cr, Mn, Ni, and V
were derived from natural origins.

• 81, 93, and 70% of Cu, Pb, and Zn origi-
nated from industrial sources.

• Natural origins, industrial sources, and
wastewater irrigation were main
sources.
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Examination of heavymetal sources in soils froma resource-based region is essential for source identification and
implementation of restoration strategies regarding soil contamination. A total of 1069 samples were collected
from cropland soils in the Baiyin District (Loess Plateau, Northwest China), a characteristically resource-based re-
gion to investigate the sources of arsenic (As), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead
(Pb), vanadium (V), and zinc (Zn). Source identification was analyzed bymultiple methods including spatial de-
viation (SD), correlation analysis (CA), enrichment factor (EF), principal component analysis (PCA), geographic
information system (GIS), and positive matrix factorization (PMF). The results showed the combined applica-
tions of PMF, GIS, and PCA were accurate, pragmatic, and effective for source apportionment. Three origins
were identified and the contribution rateswere calculated as follows: approximately 95% of As came fromwaste-
water irrigation; 75, 88, 60, and 76% of Cr,Mn, Ni, and Vwere separately derived fromnatural origins; and 81, 93,
and 70% of Cu, Pb, and Zn originated from industrial sources, respectively. Natural origins, industrial sources, and
wastewater irrigation were the three main contributors of heavy metals to cropland soils in this region.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Heavy metal accumulations in the soil are greater in resource-based
areas because of long-term pollution emissions (Chakraborty et al.,
2017; Yang et al., 2018). Although pollution activities have ceased, the re-
sidual contamination of heavy metals will persist for long periods (Han
et al., 2018), which poses a constant threat to the environment and
humanhealth (Gabarrón et al., 2018; Lü et al., 2018). These elements orig-
inate not only fromhuman activities, but also from natural factors includ-
ing weathering, precipitation, and atmospheric sedimentation (Luque-
Espinar et al., 2018). It is crucial to distinguish various sources of heavy
metals in croplands (Franco-Uría et al., 2009), which is beneficial for de-
vising and implementing restoration strategies in contaminated regions.

Multiple methods, such as spatial deviation (SD), correlation analy-
sis (CA), enrichment factor (EF), principal component analysis (PCA),
and geographic information system (GIS) have been used to find the
distinct sources of heavy metals in soils (Das et al., 2018; Facchinelli
et al., 2001; Franco-Uría et al., 2009; Gu et al., 2012; Gu et al., 2014).
These approaches can quickly identify the common features of new
components by classification or dimension reduction (Ha et al., 2014;
Huang et al., 2007; Song et al., 2018). Accurate tracking and precise cal-
culation of contribution rates, however, cannot be achieved through
these methods (Tian et al., 2018). Positive matrix factorization (PMF),
recommended by the U.S. EPA, is an ideal receptor model for source
identification and quantification (Guan et al., 2018; X. Zhang et al.,
2018), that decomposes the original dataset into a contribution matrix
and a profile group for contribution calculation and source appointment
(U.S. EPA, 2014). Combining the PMF model with GIS, the applications
would serve as an effective tool for identifying contamination (Guan
et al., 2018). However, few studies revealed the comparison of the var-
ious approaches based on those polluted regions.

Baiyin (also known as “copper city”) is an important base of non-
ferrousmetals in the Loess Plateau of Northwest China, with abundant re-
serves of Cu, Zn, Pb, Mn, Au, and Ag (Li et al., 2006; Yang et al., 2018). The
districtwas named “silver” (in Chinese) because of theflourishingmining
and smelting that occurred 600 years ago (Baiyin District Portal, 2017).
The metal-related industry has grown exponentially since the 1960s
causing severe contamination of soils and agricultural products viawaste-
water and particle settlement (Chen et al., 2018; Hu and Nan, 2018; Q.
Zhang et al., 2018), which threaten the local environment and human
health (Han et al., 2018; Hu et al., 2017). A 2015 project funded by the
ChineseMinistry of Environmental Protection revealed that Baiyin ranked
number one for the critical areas in need of control and remediation of
heavymetals (CNMF and CNMEP, 2015). The severity of heavymetal pol-
lution in this area has aroused great concern in public.

For decades, portable X-ray fluorescence spectrometry has proven
useful for quantifying elements in water, plant, and soil materials (Cai
et al., 2015; McGladdery et al., 2018; Pearson et al., 2018). However,
this method is not ideal due to the high limit of detection (LOD)
(CNMEP, 2015). These instruments are convenient and efficient owing
to their ability to determine elements such as As, Co, Cr, Cu, Mn, Ni,
Pb, V, and Zn, which have high concentrations in soil.

The objectives of our study were to 1) explore the sources of arsenic
(As), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead
(Pb), vanadium (V), and zinc (Zn) in cropland soils from a resource-
based region by multiple methods; 2) compare the differences among
these targeted methods determining a scientific and rational approach
for source identification; and 3) to quantify the origins of the selected
metals in the study area for guiding restoration strategies.

2. Materials and methods

2.1. Study area

The Baiyin District, a resource-based region with a long history of
mining and smelting, is the focus area for this study because the soil
has been contaminated with various heavy metals (Li et al., 2006;
Yang et al., 2018). This region (36°14′38″N–36°47′29″N 103°53′24″E–
104°24′55″E) is situated in the continental arid and semi-desert climate
zone, exhibiting typical characteristics of sparse rainfall, high evapora-
tion, adequate sunshine, drought and frequent winds (Wikipedia,
2018). The primary soils are calcite soil, silty soil, and red clay, derived
from Loess parent material, Yellow River alluvial deposits and red soil
parent material, respectively (Baiyin District Portal, 2017). The mining
and smelting industry started 600 years ago and developed rapidly in
the 1960s due to the abundantmineral reserves. Intensivemining grad-
ually decreased with the depletion of mineral resources after 2010
(Yang et al., 2018). This is a typical development path of resource-
based cities in many parts of the world (Chakraborty et al., 2017; Ha
et al., 2014). Long-term pollutant emissions and wastewater irrigation
in this dry climate led to severe heavymetal contaminations in farmland
soils and agricultural products (Hu and Nan, 2018; Li et al., 2006; Liu,
2003; Nan et al., 2002; Nan and Zhao, 2000; Q. Zhang et al., 2018).

2.2. Sampling and analytical procedure

Based on the characteristics of representative units such as the size
of cultivated land, topographic features, and soil type, 1069 samples
were collected in 2013 within the cropland of this study area (Fig. 1).
Accurate coordinates for each unit were recorded using a portable
global positioning system instrument (GPS72H, Garmin, Taipei, China)
and added to the spatial database. Topsoil (0–20 cm) was collected
using a stainless steel drill; 15 subsamples were mixed for the large
unit with variable terrain and 5 subsamples for the small areawith gen-
tle terrain. The “S-shaped sampling”method was conducted for the for-
mer, and the coordinates were located at the point with the most
dominant representative. For the latter, five sampling points were se-
lected, and the coordinateswere located in themiddle (Edwards, 2010).

The soil sampleswere air-dried in the laboratory at room temperature
(approximately 25 °C), then ground by an agatemortar to pass through a
0.075-mm nylon sieve. Approximately 4.0 g of powder sample was
squeezed under 40 tons of pressure for 20 s, creating a compressed spec-
imen with a thickness of 4 mm and a diameter of 30 mm. The total con-
tents of As, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn were determined with high-
accuracy portable X-ray fluorescence spectrometry (X-MET7000, Oxford
Instruments, High Wycombe, England) (Carr et al., 2008; Tighe et al.,
2018), with the limits of detection (LODs) of 1.600, 1.600, 1.100, 1.200,
10.000, 1.000, 1.000, 1.400, and 2.000 mg kg−1, respectively.

In addition, the certified reference soil (GBW07454) from the China
Standard Material Center was analyzed for use as a quality control
standard. The average recoveries for As, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn
in the certificated reference soil were 95.77, 100.84, 94.38, 95.27,
103.69, 96.72, 95.62, 94.87, and 101.45%, respectively, which the detected
concentrations of the certified reference soil were not beyond the given
ranges.

2.3. Data analysis

As an independent sample nonparametric method, Spearman's rho
correlation was performed to explore the relationships among the
heavy metals (Gan et al., 2017). Enrichment factor (EF) was established
to trace the elemental sources of atmospheric particulates (Zoller et al.,
1974) and was extended to the domain of heavy metals in the soil
(Gu et al., 2012).

EF ¼ Ci=Cref
� �

sample= Ci=Cref
� �

background ð1Þ

where Ci and Cref are the concentrations of element i and reference
element (Co was selected as the reference element in this study);
sample and background denote the values in the sample and back-
ground, respectively. Principal component analysis (PCA) was utilized
to summarize the common patterns of the heavy metals and then to



Fig. 1.Map of study area in Baiyin District, Northwest China.
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identify the sources of new components (Ha et al., 2014). Data analyses
were performed using SPSS Statistics 22 (IBM, Armonk, NY).

Ordinary Kriging interpolation was executed in GIS (ArcGIS 10, ESRI,
Redlands, CA) to construct spatial distributionmaps for principal compo-
nents and levels of heavymetals (Krivoruchko, 2011). As a factor analysis
tool, PMF (PMF 5.0, U.S. EPA, Washington, DC) was manipulated to iden-
tify sources and measure contributions by decomposing the sample data
into source contributions and factor profiles (U.S. EPA, 2014). All plots
were drawn in OriginPro 2015 (OriginLab, Northampton, MA).

3. Results and discussion

3.1. Spatial deviation

Table 1 shows that themean concentrations of As, Co, Cr, Cu, Mn, Ni,
Pb, V, and Zn in soils were 20.584, 22.914, 39.118, 36.650, 588.513,
25.012, 18.400, 71.482, and 113.580 mg kg−1, respectively, with the
Table 1
Descriptive statistics of different heavy metals in soil at study area (n = 1069).

Element bLODa

quantity
Minimum
(mg kg−1)

Maximum
(mg kg−1)

Mean
(mg kg−1)

As 17 – 211.060 20.584
Co 0 19.489 30.627 22.914
Cr 34 – 168.630 39.118
Cu 11 – 747.091 36.650
Mn 0 236.415 5982.590 588.513
Ni 7 – 106.716 25.012
Pb 48 – 1156.604 18.400
V 53 – 278.607 71.482
Zn 0 17.387 3322.065 113.580

a LOD = limit of detection. The number of samples that below LOD are b5%.
order of Mn N Zn N V N Cr N Cu N Ni N Co N As N Pb. A previous study re-
vealed that heavy metals in soil within this area followed the sequence
of Zn (230.66 mg kg−1) N Pb (100.7 mg kg−1) N Cu (60.05 mg kg−1),
which differed from the current outcomes due to more widespread
sampling sites of the current study (Dai et al., 2012).

The large standard deviation and coefficient of variation for Cu
(73.761, 2.013), Pb (76.102, 4.136), and Zn (232.907, 2.051) suggested
that these three elements had relatively high spatial variation (Jia
et al., 2018) and had been elevated at contaminated locations by exter-
nal inputs, such as human activities and atmospheric deposition (Tume
et al., 2018). Additionally, the average values of Cu, Pb, and Zn were
much higher than the median, whereas smaller differences existed for
the other elements, making abnormal distributions of the concentra-
tions with positive skewness and cliffy kurtosis. These results provided
further evidence for the external inputs of Cu, Pb, and Zn in soils.

Among all tested elements, Co was unique for the lowest standard
deviation (0.898) and the smallest coefficient of variation (0.039). This
element served as a reference due to its uniform distribution in the
soil with less external influence (Ranjan et al., 2018; Tume et al., 2018).

3.2. Correlation analysis

Spearman's rho correlation, a nonparametric method, was adopted to
explore the relationships between selected heavy metals. As demon-
strated in Fig. 2, significant positive relations are found among Cu, Pb,
and Zn, confirming the common behavior of the three metals in this
area, which is supported by the spatial deviation. Previously, the elevated
presence of Cu, Pb, and Zn have been associated with human activities,
such asmining and smelting factories, coal-fired power plants, and indus-
trial parks (Ha et al., 2014; Hu and Cheng, 2013; Yoon et al., 2006).

Positive relationships were also found between Co and Cu, Mn, Pb,
and Zn. Due to the uniform distribution of Co, these results suggested
that the latter four elements occurred naturally in the soil via the parent
materials andmineral constituents (Lü et al., 2018). The study area is lo-
cated on the Baiyin-Qingshuigou-hangmapolymetallic deposit, a crucial
metallogenic belt in Northwest China established from volcanic activi-
ties during the Silurian period, causing Cu, Zn, Pb, andMn to benaturally
abundant (Tang et al., 2002).

In contrast to the synergism of other metals, As and Pb were nega-
tively correlated with a coefficient of −0.454, indicating two different
sources. Generally, As in the soil is sourced from agrochemicals, irriga-
tion waters, and atmospheric deposition (X. Zhang et al., 2018),
whereas Pb is rooted in mineral soils and enriched following mining
and smelting activities (Kabata-Pendias, 2011).

The results also revealed that V had no apparent correlations with
other metals. Similar to Co, V was uniformly distributed throughout
the soil, sourcing from mafic igneous rocks (Kabata-Pendias, 2011).

3.3. Enrichment factor

The EF value for specific tested metals was regarded as an
indicator for different sources, including natural weathering
Standard
deviation

Coefficient
of variation

Median
(mg kg−1)

Skewness Kurtosis

13.400 0.651 19.731 5.605 60.000
0.898 0.039 22.842 1.916 12.098
29.668 0.758 37.424 0.572 −0.084
73.761 2.013 20.876 6.116 42.330
193.470 0.329 580.078 20.495 566.916
11.047 0.442 24.585 0.737 3.419
76.102 4.136 3.499 10.871 136.538
51.197 0.716 67.485 0.602 0.180
232.907 2.051 71.436 8.147 77.124



Fig. 2. Relationships between different elements in soils using scatter matrix analysis.

Fig. 3. Values of enrichment factor (EF) for heavy metals in soil.
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processes or anthropogenic sources (Gu et al., 2012). The value of EF
b 0.5 indicates the source originated from the Earth's crust, whereas
0.5 ≤ EF ≤ 1.5 denotes a natural contribution and related human
activities (mining and smelting), and EF N 1.5 signifies point
and non-point pollution (Zhang and Liu, 2002). Cobalt was selected
as the reference element because of its low deviation and uniform
distribution. The average values of EF for each element were
calculated based on the background values (As 12.6, Cr 70.2, Cu
24.1, Mn 653, Ni 35.2, Pb 18.8, V 81.9, Zn 68.5, Co 12.6 mg kg−1)
(CNEMC, 1990).

As illustrated in Fig. 3, the average values of EF for Zn (0.912), As
(0.898), Cu (0.836), and Pb (0.538) are larger than 0.5, showing the
natural and anthropogenic origins of the four metals, whereas the
remaining elements, Mn (0.496), V (0.480), Ni (0.391), and Cr
(0.306) are originated from the Earth's crust. However, these results
differed from the correlation analysis, because the reference
element, Co (22.914 mg kg−1), was 1.819 times greater than the
background value (12.6 mg kg−1), causing smaller EF values than
expected. Accordingly, the adjusted classification made them appro-
priate that Zn, As, Cu, and Pb were from anthropogenic sources, Mn,
V, and Ni were from natural weathering processes, and Cr was from
the Earth's crust. The artificial origins included both agricultural
sources (fertilization and irrigation) for As and industrial sources
(mining and smelting) for Pb, despite the results of correlation anal-
ysis (Du et al., 2017).
3.4. Principal component analysis

As an approach of dimension reduction, PCA utilizing non-rotation
method was selected to find common characteristics in concentration
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Fig. 7. Contribution rates of different sources on eight heavy metals based on positive
matrix factorization.
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anddistribution of these heavymetals and to recognize their origins (Ha
et al., 2014; Micó et al., 2006). The first six components explained
92.23% of the total variance with initial eigenvalues above 0.5
(Table S1). However, eight selected elements had high coefficients on
the first four components. Lead (0.876), Zn (0.839), Cu (0.827), and As
(0.573) related to the first principal component (32.68% of the total var-
iance), indicating similar patterns in soil, whereas Ni (0.610) and Mn
(0.589), Cr (0.821), and V (0.506) had high coefficients for the second
(13.73%), third (13.15%), and fourth principal components (12.16%),
respectively.

Three biplots are shown in Fig. 4, demonstrating the distinct proper-
ties of the eight heavymetals on the four components. For component 1,
the common pattern of Pb, Zn, Cu, and As, was mainly expressed on
points 79, 78, 74, 73 and 81, which were located in the outskirts and
near the intensive industrial parks (Fig. 4A). This inferred that the four
heavy metals were influenced substantially by human activities, espe-
cially mining and smelting in this region. The industrial waste outputs
of water, gas, and solids were approximately 3.97 × 106 T, 9.61
× 1010 m3, and 5.72 × 106 T; whereas the totals for residents were
3.60 × 107 T, 1.56 × 103 T, and 1.29 × 103 T per year, respectively
(Statistics Bureau of Baiyin, 2017). These inputs might serve as the pri-
mary sources for soil contaminations (Alsaleh et al., 2018; Gabarrón
et al., 2018).

Points 344, 372, 84, 80, and 580 had relatively high scores for com-
ponent 2, scattering throughout the study area with no noticeable fea-
tures discovered among them. These results indicated a lack of distinct
characteristics on the distribution of Ni and Mn (Fig. 4A). Component
3, representing the dispersed trait of Cr, was revealed on points 325,
344, 491, 533, and 630, which also had an irregular rule (Fig. 4B). As
for component 4, points 74, 88, 344, 75, and 57 displayed high eigen-
values and appeared in the vicinity of the city, indicating that this com-
ponent was most likely controlled by anthropogenic origins (Fig. 4C)
(Gabarrón et al., 2018).

3.5. Geographic information system

Spatial distribution diagrams for the four components were created
based on the standardized scores of the sampling points, which were
assigned to each component after PCA (Ha et al., 2014). The Yellow
River in the south andmountains on the other three sides created an ob-
vious natural border. Therefore, this boundary verified that no sample
was collected outside the study area. After cross validation of all
assigned sample locations, ordinary Kriging interpolation models se-
lected in GIS were Exponential for component 1 and component 2,
and Hole Effect for component 3 and component 4 (Fig. 5 and
Table S2), according to the criterion of theminimummean standardized
(MS) of prediction errors and the closest to 1 of the root-mean-square
error (RMSE) (Krivoruchko, 2011). Source identificationwas conducted
by using these interpolation maps combined with the actual conditions
of the sampling points (Facchinelli et al., 2001; Song et al., 2018).

Fig. 5A shows high-level plots for component 1 (colored with red)
located in the outskirts and mining areas, where metal-related indus-
trial parks were present. This area was famous for non-ferrous metals
with 600 years of mining and smelting history (Baiyin District Portal,
2017; Nan et al., 1999); soils were polluted with Pb, Zn, Cu, and As
from long-term and extensive non-ferrous metal production
(Chakraborty et al., 2017). Component 1 (common patterns of Pb, Zn,
Cu, and As), therefore, was not only influenced by the dominant natural
background, but also controlled by industrial anthropogenic activities
(mining and smelting).

In contrast with component 1, component 2 had low levels around
the non-ferrous metal base and high levels in the northwest area of
the map, indicating the different sources of Ni and Mn from the above
four elements (Fig. 5B). These distribution phenomena roughly
matched the altitude of the study region; areas with high scores ap-
peared above 2000 m, whereas low values were located below
1600 m. This implied that movement of the earth's crust lifted the orig-
inal rock rich in Ni and Mn via the orogenesis (Ding et al., 2017). Nickel
and Mn were thus affected by natural factors such as rock weathering,
which explained the distribution of component 2.

Relative homogeneitywith subtle differences existed in the distribu-
tion of component 3 (Fig. 5C). Most of the study area had values close to
zero, and the majority of the soils here were developed from Loess par-
ent material. High score areas for component 3 were distributed at the
north and the south of the map, where soils were formed from residual
deposits (Brady and Weil, 1999). Component 3, representing Cr, there-
fore, was determined by soil parent materials (Huang et al., 2007; X.
Zhang et al., 2018).

Component 4 consisted of high value regions concentrated in the
mining areas (Fig. 5D). The high-level polygon did not expand into the
urban district, nor did it extend down to the lower reaches of
Dongdagou, a wastewater escape canal for metal-related factories and
urban households (Chen et al., 2018; Wang et al., 2012). These results
differed from component 1 suggesting that the element V was not con-
trolled by anthropogenic activities, but originated from natural sources.

3.6. Positive matrix factorization

Positive Matrix Factorization was employed to quantify the contri-
butions of different sources of heavy metals (Guan et al., 2018). The
standard deviations of detected concentrations for each element at an
individual pointwere chosen to be uncertainty data. Signal-to-Noise ra-
tios (S/N) of As (1.5), Cr (2.6), Cu (2.5), Mn (9.6), Ni (1.6), Pb (1.4), V
(2.0), and Zn (7.6) were all above 1, revealing the variabilities in the
measurements were real. These revised ratios were calculated as the
sum of concentration exceeding the uncertainty divided by the sum of
uncertainty values. According to the number of component in PCA, the
number of factors in the base model runs was set to 4, making the
models well-fitted with residuals normally distributed between +3
and −3 and R2 above 0.7 (Fig. 6). Three methods (base model, base
model displacement, and base model bootstrap) were conducted, and
the base model bootstrap result was selected because of the broadest
error estimation, capturing both random errors and rotational ambigu-
ity, in reference to the user guide of PMF 5.0 (U.S. EPA, 2014).

The results of average contribution rates for sources of heavy metals
and factor profiles for sampling points are exhibited in Figs. 7 and S1.
Based on the values of factor profiles, Ordinary Kriging in GIS was
adopted to predict the distribution of these factors (Fig. 8). With the
combination of these two approaches, the sources were identified and
quantified. The majority of As came from factor 1, which displayed the
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distribution of high-level blocks in the downstream basin of Dongdagou
(Fig. 8A). For example, representative points 597, 82, and 83 with the
highest value for factor 1, were located in a sewage irrigation area. Pre-
vious studies found Dongdagou was polluted by wastewater frommin-
ing areas and industrial zones, and the contaminated water was the
primary irrigation resource for crop production along the river (Chen
et al., 2018; Dai et al., 2012). It can be inferred that factor 1 was related
to agricultural activities, and approximately 95.38% of As in soil origi-
nated fromwastewater irrigation, which was accorded with the As dis-
tribution in this area (Fig. S2A).

Chromium, Mn, Ni, and V had a relatively consistent source, which
was predominately controlled by factor 3, with percentages of 74.64,
88.01, 59.63, and 76.20%, respectively. As shown in Fig. 8C, three repre-
sentative points (344, 159, and 98) for factor 3 are sporadically distrib-
uted in the area, illustrating that factor 3 denotes the natural origins
including crustal movement, rock weathering, and soil parent material
(Gu et al., 2012; Liu, 2017). Compared with the results of EF (Mn, V,
and Ni derived from weathering processes and Cr derived from the
Earth's crust), the outcomes of PCA and GIS (Ni and Mn derived from
rockweathering, Cr came fromparentmaterials, and V rooted fromnat-
ural sources), along with the spatial distributions of the four elements
(Fig. S2B, D, E, and G), the results were consistent and credible.

Factor 2 and factor 4 denoted two kinds of industrial sources from
Cu/Pb and Pb/Zn factories, because the representative points 81, 166,
79 and 74, 78, 88 appeared within the intensive industrial parks in the
outskirts (Fig. 8B and D). Currently, Cu, Pb, and Zn had a close link to
the industrial discharge, such as mining and smelting factories, coal-
fired power plants, and industrial zones (Shen et al., 2017; Yoon et al.,
2006). The results followed the outcomes of the EF, PCA, GIS, and distri-
butions of Cu, Pb, and Zn (Fig. S2C, F, and H), and also agreed with pre-
vious studies (Ha et al., 2014; Hu and Cheng, 2013; X. Zhang et al.,
2018). Therefore, it could be concluded that the portions of 80.87,
93.34, and 69.71% of Cu, Pb, and Zn were derived from the industrial
sources, respectively.

3.7. Comparison of multiple methods

The spatial deviationwas a quick approach to obtain the general fea-
tures of heavy metal distributions and to confirm the exogenous input
of elements with high standard deviation and coefficient of variation
(Jia et al., 2018; Tume et al., 2018). In the current study, the external
input of Cu, Pb, and Zn in soils was found based on the spatial deviation.
Correlation analysis was used to explore the common patterns of ele-
ments. Once the source of one item was confirmed, the elements with
positive or negative relationships could be identified as similar or con-
flicting sources (Franco-Uría et al., 2009; Huang et al., 2007; Micó
et al., 2006). Given this discipline, the consistent source of Cu, Mn, Pb,
and Zn was determined. Calculated based on a reference element, EF
was adopted to classify the sources of weathering processes or anthro-
pogenic effects (Gu et al., 2012; Zhang and Liu, 2002). When the con-
centrations of a reference element dramatically changed, the
judgment criterion for source needed to be correspondingly adjusted.
According to the adjusted classification of EF values, it was determined
that Zn, As, Cu, and Pb were from artificial sources, Mn, V, and Ni were
from weathering processes, and Cr was from the natural background.
While the three methods, SD, CA, and EF were all direct and convenient
approaches for source identification, however, they could not pinpoint
the exact sources andwere not able to estimate the contributions of dis-
tinct sources.

To identify the sources by dimension reduction, PCAwas conducted,
obtaining different principal components with high variance explana-
tion and corresponding standard scores (Das et al., 2018; Lü et al.,
2018). Four components, representing four origins, were determined
in this study. With the combination of spatial interpolation distribution
of the component scores in GIS (Ha et al., 2014), the various sources
were recognized, which Pb, Zn, Cu and As were from long-term metal
production and Ni, Mn, Cr, and V were from natural sources such as
rock weathering and parent materials. Although the sources have
been determined, the contribution rates could not be directly achieved,
because component scores derived from ordinary PCA had negative
values that could not be calculated to the contribution rates, also the
combination of regression analysis was to needed for contributor quan-
tification (Huang et al., 2018; Xu et al., 2014). Differed from PCA, the
positive factor profiles derived from PMFwere directly utilized to calcu-
late the contribution rates and to draw the spatial distribution diagrams
in GIS for source identification (Guan et al., 2018; Tian et al., 2018). Fur-
thermore, the introductionof uncertainty data improved the accuracy of
identification of potential sources (U.S. EPA, 2014). The precise origins
and exact contributions were confirmed by the combination of PMF
and GIS, which were As (95%) from wastewater irrigation, Cr (75%),
Mn (88%), Ni (60%), and V (76%) from natural origins, and Cu (81%),
Pb (93%), and Zn (70%) from industrial sources. Therefore, combining
these applications with the utilization of distribution maps and the
real condition were accurate and essential for source apportionment
of heavy metals in the soil.

4. Conclusions

Multiple methods, such as spatial deviation, correlation analysis, en-
richment factor, principal component analysis, geographic information
system, and positive matrix factorization, were employed to diagnose
the sources of heavymetals in soils. After comparison, the combined ap-
plications of PMF, GIS, and PCA were accurate, applicable, and effective
for source determination.

Three origins were identified and exact contributions were calcu-
lated: 95.38% of As came from wastewater irrigation; 74.64, 88.01,
59.63, and 76.20% of Cr, Mn, Ni, and V, respectively, were derived from
natural origins, such as crustal movement, rock weathering, and soil
parentmaterial; 80.87, 93.34, and 60.71% of Cu, Pb, and Zn, respectively,
came from the industrial sources. Natural origins, industrial sources,
and wastewater irrigation were the three main contributions to heavy
metals in cropland soils from this region.

For this resource-based region, where soils were heavily contami-
nated with As, Cu, Pb, and Zn, anthropogenic activities including indus-
trial input and wastewater irrigation were the predominant source of
pollution in cropland. The key to tackling this severe issue is to reduce
the contaminant discharge in industrial areas and to improve the qual-
ity of irrigation water. Therefore, the results are of great significance in
guiding prevention-controlling-remediation strategies for heavy metal
contamination in the local land.
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